Monthly Archives: November 2020

Composite Wingtips – Take 1

It didn’t take long before I realized that I’m in for a battle. The fiberglass wingtips, as supplied with the kit, simply don’t come close to fitting the wing. They’re obviously hand-made parts and are nowhere near identical. Frankly, I expected better. But, they are what they are.

I don’t have much hope that if I push the factory for new parts, I’ll get anything [much] better. I’ll count myself fortunate if I can get satisfactory results with less than the 130 hours another Sling 2 builder has put into his wingtips. Jeez – that’s a lot of time!

Right off the bat – the overall length is far too long to fit into the end of the wing panel. The airfoil shape cross-section is decidedly too flat. The up-sweeping trailing edge scallops are oddly different shapes. The lack of alignment at the point where the tapered wing skin is supposed to accept the trailing edge of the wingtip is unfortunately grotesque. Cutting and reforming will be necessary. Ultimately, the wingtips will be permanently mounted with 3,2mm multi-grip blind rivets. I haven’t settled my mind as to how I will mount the wingtip lights.

I decided to make a simple wing-shaped jig from a 2 x 4 foot section plywood. This jig is much less elaborate than others I’ve seen, but it will hopefully result in a useful tool and a reasonably consistent reference I can use to evaluate and correct the various eccentricities of these fiberglass parts.

I’ve been fortunate to be able to see what other builders have encountered and done with their wingtips, and so, I’ll share my adventures too. For the Sling 2 builders, we all seem to be – more or less – in the same boat.

RH Wing – Fuel Tank and Inspection Covers

Practice makes perfect they say. Well, maybe not perfect. But the going seems a little easier when you’ve been there before. So it was for mounting the second fuel tank. It actually fit slightly better than the other one. I knew what to do, and on it went without issue.

I did the same basic steps as I did for the first tank. I felt confident, and the work went quickly. I had to carefully dress a number of the overlapping holes in the tank and spar with the #20 chucking reamer in the lithium drill. I knew what to expect and there were no surprises. I also had to touch the holes in spar web to align with the outermost Z-bracket so I could get the AN3 bolts through and threaded into the anchor nuts. Once again, I used a length of cord to pull on the Z-bracket while the tank was being fitted for the final time. That worked like a charm.

There are several stainless steel rivets, top and bottom of the spar near the root. Those are treated with fuel tank sealant for corrosion protection. The rest of the rivets are aluminum multi-grip. Riveting goes pretty fast when the pieces are fitted in place.

Having both fuel tanks mounted is a big milestone and yielded a rather wonderful sense of satisfaction that was sweetened with a measure of relief. Success! Good result. Yay!

The M4 rivnuts for the inspection panels went in without a hitch. I had to enlarge the holes in the bottom wing skin to #A – the perfect size (I’ve found) to accept the rivnut prior to setting them with the drill-mounted tool I use. Screw holes in each of the cover panels had to be enlarged for close clearance of M4 stainless steel button-head hex screws.

LH Wing – Inspection Covers

Compared to mounting a fuel tank, enlarging holes and setting M4 rivnuts seemed easy and definitely less stressful. Still, it was no time to be careless. The wing skin is easy to damage.

It took several steps to get the factory punched holes enlarged to letter number #A diameter, a perfect size to accept M4 rivnuts. I double checked my references and reviewed the process I would use. A series of increasingly larger straight-flute chucking reamers in my trusty lithium-powered drill did the trick.

All of the holes in the wing skin and the inspection covers were in the correct places and the alignments matched perfectly. The drill mounted rivet setting tool worked flawlessly. All rivets are consistent and tight. The screw clearance holes in the covers are ideal. Everything is fits together nicely.

LH Fuel Tank Fitment – Success!

I took a bunch of photos and texted them to Jean d’Assonville. After several days of phone tag – one or the other of us were busy – we connected for a brief chat. That’s all it took.

It turns out that I was in pretty good shape after all. My hell was all in my head. Having quite a few rivets that were hand-fitted at various places around the fuel tank flanges is a good sign. The thing that really set me free was to hear that it is acceptable to dress stubborn rivet holes with a chucking reamer or drill. The same thing is true for Z-bracket holes on the spar. You have to do what you have to do. I just needed to hear the guidance. I’ve learned from experience – it doesn’t usually pay to be impetuous.

A shim is necessary under the top of the Z-bracket at the root of the tank. The other Z-brackets fit well enough. Other builders have needed to shim several brackets. Mine were flat on the spar. Another good thing.

Over a period of several days I evaluated fitment and planned my procedure. Then, I carefully fit the tank in place, one last time, as I’ve done twenty times or more by now.

I made a little shim from material I had on hand. A washer would have worked too, but I thought aluminum against aluminum might be better than against steel. Slightly more surface area is probably not such a bad thing either.

I fitted as many rivets as I could – by hand. The remaining 4,0 mm holes around the flanges were match-reamed with a #20, straight-flute chucking-reamer and deburred. Clecos and additional rivets were hand-fitted.

A mix of AN3-4A and 3A bolts, with washers, were threaded through the spar web and into the anchor nuts on the Z-brackets. (I began with the 4A length for 2 outer brackets, but then worried that the length might turn out to be slightly long.) At the root Z-bracket, two AN3-13A bolts, with washers and nuts and with the shim in place – were finger-tightened.

Finally – today, I mixed up a tiny bit of Flamemaster CS-3204 B-2, as recommended by Sling Aircraft to deter galvanic corrosion between the aluminum and the stainless steel rivets that are called out for use at the wing root – top and bottom.

Dipping the SS rivets in the sealant – one-by-one, I placed them and then pulled them with my trusty Milwaukee M12 lithium battery-powered tool. Rivet pulling continued with for the balance of 4,0mm aluminum rivets. Lastly, the 3,2 x 8mm rivets around the leading edge at RIB-105 were pulled. The Z-bracket bolts were all torqued. The 4A and 3A lengths are both fine. It’s all good. The fuel tank is mounted!