Tag Archives: skin

Closing Up The Rudder

With a good rudder skin, I was able to prepare, fit and secure the skin to the structure. Using techniques that I’ve learned from building similar components, the rudder went together smoothly. It’s a fine result.

There are still several tasks remaining to complete the rudder – fit the skin for the aero counter-balance, mount the internal counter-balance weight, run the strobe wire, fit the strobe to the rudder tip, and then finally, finishing the fiberglass and mounting of the rudder tip.

The great people at TAF USA worked hard to support me and promptly get me a rudder skin that I was satisfied with. The one that came with my empennage kit wasn’t bent properly on the trailing edge. It simply did not fit happily on the structure. A second skin was unfortunately damaged from moving about inside the crate during shipping. The third one was the charm.

It is crucial that the skins are fabricated perfectly. This plays a huge part in the resulting components being true. Precise fabrication is a critical element of the pre-punched and bent parts that allows them to assemble into a component that is uniform and free of twists, even without the use of jigs. The design of Sling aircraft absolutely depends upon the accurate fabrication of the parts. If yours aren’t right, work with TAF to get ones that are. Don’t mess around.

Closing Up the Horizontal Stabilizer

Completing the horizontal stabilizer went smoothly and turned out beautifully – ultimately. The fine folks at TAF, now Sling Aircraft, were super-supportive. Without going into great detail, I’d found that the leading edge bends of both HS skins were not on centerline – root to tip. They just wouldn’t fit properly – imposing significant stress and twisting of the structure. Sling Aircraft stepped up to quickly provide replacement HS skins and that saved the day.

I’ve been impressed with how precisely the holes in the skins match with the assembled structure. I’ve made a very conscious effort to take advantage of the kit precision. I try to get the skins initially positioned with very few clecos. I want to be able to move the skin slightly, until I can see that nearly all of the holes in the skin and structure are concentrically aligned. Starting the fitment process with fewer clecos makes that easier – possible. In practice, I’ve found that good overall initial skin position, relative to the underlying structure, allows the great majority of rivets to drop in – effortlessly. Once I’ve got the skin in place, I can further anchor things down with alternate clecos and hand-inserted rivets for the entire HS assembly.

I used a vertical HS working orientation that allowed me to evaluate skin fitment on top and bottom surfaces at the same time. Once the skin was in place, very few rivet holes needed attention – and then, only the slightest dressing with a chucking reamer in my lithium battery-powered drill. With a relaxed final fit of skin, rivets and structure – I’ve seen that when the rivets are pulled, nothing really moves. The permanently fastened skins are remarkably free of surface deviations. I’m quite pleased and anticipating that the contours of the final painted surfaces will be excellent.

Closing Up the Vertical Stabilizer

Final preparation, fitting and riveting of the skin to the VS structure was done today. Everything went together beautifully. I’d done extensive research, detailed review and careful pre-fitting to be certain that I had confidence in a process that would – and did – produce my intended result.

VS Skin – Prep and Test Fit

I spent several work sessions to make sure I can expect good results when it comes time to close up the VS by riveting the skin to the underling structure. By that time – the VOR antenna, its RG-400 coax cable and the tail strobe wiring must be in place and will be expected to last the lifetime of the aircraft. No pressure!

Holes around the edges of the skin were typically large enough to accommodate 3,2 x 8mm domed rivets, but the holes in the skin at the interfaces with the ribs were smaller and needed to be enlarged with a #30 straight flute chucking reamer. All holes in the skin were carefully deburred. Overall, the concentric alignment of holes in skin and structure were pretty good, but a few will need to be match-reamed during the final fit, immediately prior to the riveting.

The antenna base required 4 recesses be machined into the plastic-like material that allow shortened rivets to fit without interference. My trusty Dremel Tool did both jobs handily – shortening the rivets and creating the recesses.