Tag Archives: rivet

LH Aileron – Finishing Up

The LH aileron had been languishing under the bed in my guest bedroom with the skin cleco’ed in place. It just needed the outboard rib with the reworked hinge brackets.

Riveting the skin on the bottom went well. Now it’s back under the bed again, with and in the same state as its buddies. Final riveting of ailerons and flaps will wait until I’m in the mood to fit them on the wing assemblies. That might even wait until I have the wings joined to the fuselage. We’ll see. I think that decision depends on what I decide to do about painting. Fly first or paint first? Yes – another excellent opportunity for inspirational procrastination.

Ailerons – Fab, Rework and Pre-Assembly

Aileron assembly has been delayed by ignorance and procrastination. It’s amazing how long it took me to decide to lever $20 out of my pocket for a tool. There’s an anchor nut that gets attached to a rib with a couple of stainless steel rivets that have a 120 degree countersink. I was reluctant to spring for a 120 degree, #40 pilot cutter. This left me pondering various alternative ways I might proceed to attach the anchor nuts. The door was left open because the construction manual doesn’t say anything about it. But, I did have reference examples – other builder’s and identical anchor nuts mounted in my quick-build fuselage. I finally ended up getting the stupid pilot cutter and then mounted the anchor nuts as I knew they should be from the very beginning.

Another self-inflicted setback has been in play. Sometime earlier, I’d riveted one of the aileron hinge bracket and rib sub-assemblies together. Unfortunately, something I’d noticed, but dismissed during initial fitting, had to be corrected. The bolt holes on the inner and outer aileron hinge brackets were not in alignment. To compound the problem, I reasoned that it would probably be ok to ream the bolt holes a little – make them oblong – and somehow that work out ok. Wrong! The result was better alignment, but at the cost of precision (proper) fit.

Sloppy fit for the outer aileron hinge just isn’t going to cut it. What could I do? Eventually, I did what I I should have done in the first place – ask the factory for guidance. I sent an email and got an overnight response directly from Mike Blyth – designer of all Sling Aircraft models. The outer bracket just needs to be bent a bit more. So simple! That absolutely did not occur to me. Sadly, I’d ruined (by reaming) the inner and outer brackets for one aileron and needed new ones. TAF USA rushed me replacements. Fantastic service!

With new brackets in hand, I slightly increased the bends on the outer brackets for both ailerons, removed the old brackets from one of the ribs and riveted all of the sub-assemblies together. Beautiful! I can sleep again. No more worries thinking about how I would try to rationalize wobbly ailerons to myself, the DAR, my technical counselors and everyone else.

RH Flap – Ribs and Skin Assembly

With a now ample supply of 4,8mm rivets in both 15 and 10 mm lengths, finishing the lefthand flap could proceed. I did, however, have to make a decision about how to address hole misalignment involving the short ribs of the hing-rib subassemblies. The solution I chose was hole enlargement and larger 4mm rivets.

I’ve learned that perfect factory bends are required in order to get relaxed fit and freedom from structure twists and wags on the trailing edges of control surface skins. Knowing what to look for during inspection is essential. It had been months since I’d received the quick-build wing kit components and done my inspections. I was reasonably confident the skins were good, yet there was a huge sense of relief to see them actually fitting very nicely.

For the flaps and ailerons, it is common practice to initially rivet only the bottom surface of the skins to the ribs and brackets. The top surface and the row of rivets at the leading edge of the control surface remain free until they are fitted to and the trailing edges are perfectly aligned with the each other and the wing.

Seat Assembly

Assembly of the adjustable seats has been straightforward. They’re made up of 2 hinged panels that have a simple channel structure, sandwiched with identical skins – top and bottom. Inside the seat base is spring-loaded lever and cable mechanism for the slide locking pins. I opted to adapt some clevis pins instead of using the kit-supplied (large) solid rivets to assemble the linkages. The rivets proved difficult to deal with. It took a few days of pondering, but I eventually realized that custom fabrication of clevis pins were the way for me to go.

The only metal preparation I did was deburring and scuffing with a Scotch-Brite pad. I may or may not paint the seats as they’ll be almost entirely covered by the upholstery. The structures and panels fit perfectly and went together quickly. Sling 2 seat design has apparently changed over the years. The recently manufactured parts I had didn’t exactly match the construction manual, but understanding and dealing the differences was not difficult.

There are now at least 2 ways that the piano hinge can be mounted between the seat base and back, so that it can folded forward to access the luggage compartment area. The deciding factor seems to be how far beyond perpendicular to the seat base the seat back will naturally recline. The construction manual shows the hinge on the surfaces, riveted across step transitions where the side channels overlap the skins. The hinge, mounted to the back and bottom edges of the seat panels just seems more appropriate and allows for about 21 degrees backward and no restriction (until the panels meet) in the forward folding direction. That’s perfect. Seat recline angle is set by side-straps anchored to brackets at the edges of the seat panels.

The seats slide on rails mounted to the center fuselage. Clearances are pretty close, but appear to be perfectly aligned. Finding that helps to confirm that the center fuselage is built straight and square. Oh let me tell you that’s good news!

LH Flap – Prep and Assembly

As I near the end of dealing with fitting skins to structure, my confidence was pretty high that this would go well for the flaps (and eventually the ailerons). I’ve learned important lessons about how to inspect skins for proper fabrication – especially bends.

As I discovered from the building the empennage, lengthwise bends (folds) of the skins must be very close to perfect or else entire structure will be pulled out of true alignment when preparing or attempting to close up the final assembly.

There has proven to be considerable lead time in the process of securing replacement parts and the earlier a problem is discovered, the better. Almost immediately after the main QB kit was delivered in February, I looked over the flap and aileron skins – very carefully – and determined that they’d likely be acceptable.

Outdoors metal preparation with Alumiprep 33, Alodine 1201 and then rattle-can primer is much more convenient and pleasant with the warm summer weather. I opted to use NAPA 7220 gray self-etching primer, as none of the surfaces would be exposed. I had the stuff on-hand, but find that I don’t like it as well as the Rust-Oleum product, if for no other reason than the performance of the spray can. The any-angle can from Rust-Oleum is superior, even though I paid considerably more for the 7220 primer. (As I’ve mentioned before, if I do another build, I may well forgo alodine and primer altogether. With my budget and facilities it has been a huge time sink and perhaps not worth the effort. Even at my tender young age, I’ll be pushing up daisies before corrosion would be an issue with an untreated airframe.)

Due to a shortcoming with the listed shipping quantity in the wing kit packing list (KPL), I received only enough 4.8 x 15mm rivets to assemble one flap. I also found that one-size-fits-all — didn’t. It turns out that the overall thickness of one parts stack-up was very slightly less than the recommended grip length of the 15mm rivets. Even though there was no mention of this issue in the assembly instructions, it became obvious that a 10mm length would be better.

I ordered more rivets – both 15mm and 10mm lengths – twice. Once from TAF USA and then from a supplier of Gesipa rivets in UK. TAF sent a big batch of 10 and 15mm rivets to me overnight. Bravo! Great support effort! Thank you!! But, the rivets were not to my liking. They are some alternate brand, different design, slightly larger diameter (didn’t fit) and not nearly as well finished as the Gesipa product. I ordered the real deal, but it took 2 weeks to get them in-hand.

Rudder – Composite Tip and Beacon

Never underestimate the amount of procrastination required to get something done.

As usual, parts preparation takes most of the time. The fiberglass tip, as supplied in the kit, was a bit rough. There were quite a few voids and other imperfections in the layup. The trailing edge was too fat to fit nicely with the skin. Cutting and re-gluing with a bit of glass cloth and West 105 epoxy resolved that. The contour of the tip leading edge needed building up and shaping – requiring several passes. Epoxy takes hours to cure, so each step takes a day. Epoxy filler and wet-sandable primer attends similar time-sinking characteristics. Along the way, test fitting and match drilling of the mounting (rivet) holes was accomplished.

I didn’t really like the way the construction manual prescribed M4 rivnuts for the aluminum doubler that serves as the mounting base for the strobe. My concern is that rivnut installation might crush the fiberglass. I opted instead to make a new part that uses MK1000-06 anchor nuts and is riveted in place with AN426-3 solid flush rivets. Having the patience to eventually arrive at the decision to do this and then actually fabricating the mounting plate demanded all of the procrastination I could muster.

Copious foot-dragging precipitated the decisions about wiring and method of tip attachment. For some reason, I just didn’t want to shorten the (rather stiff) wire bundle of the Aveo Mini Max LED beacon. At the same time, I didn’t want the splice to be at or near the point where the wire exits through the bushing in the rib. A loop seemed the answer. And so it was. Final fitting of the tip to the rudder and pulling of the 3,2 x 8 mm rivets went well. I’d long struggled with the temptation of making the tip removable, à la Pascal Latten, by installing dozens of anchor plates, flush rivets and #4-40 screws, but my steadfast procrastination eventually paid off and the scales tipped in favor of just pulling rivets and being done with it.

Rivet Shortening – Apparently, Someone’s Got to Do It

There are several points in the build where short rivets are required. Sling Aircraft (TAF) has chosen to leave this task as an exercise for the builder, to adapt some from the ordinary ones supplied with the kit. Here I’m shortening 3,2 x 8mm rivets to about 5mm. These will be used to fasten the piano hinge and control horn to the elevator trim tab.

For some steps, I use a small box end wrench and a socket to provide support around the entire head of the rivet, as I drive the mandrel out or back in using a hammer. I use a cutoff-wheel in the Dremel Tool to trim the rivet body.

Closing Up The Rudder

With a good rudder skin, I was able to prepare, fit and secure the skin to the structure. Using techniques that I’ve learned from building similar components, the rudder went together smoothly. It’s a fine result.

There are still several tasks remaining to complete the rudder – fit the skin for the aero counter-balance, mount the internal counter-balance weight, run the strobe wire, fit the strobe to the rudder tip, and then finally, finishing the fiberglass and mounting of the rudder tip.

The great people at TAF USA worked hard to support me and promptly get me a rudder skin that I was satisfied with. The one that came with my empennage kit wasn’t bent properly on the trailing edge. It simply did not fit happily on the structure. A second skin was unfortunately damaged from moving about inside the crate during shipping. The third one was the charm.

It is crucial that the skins are fabricated perfectly. This plays a huge part in the resulting components being true. Precise fabrication is a critical element of the pre-punched and bent parts that allows them to assemble into a component that is uniform and free of twists, even without the use of jigs. The design of Sling aircraft absolutely depends upon the accurate fabrication of the parts. If yours aren’t right, work with TAF to get ones that are. Don’t mess around.

Closing Up the Horizontal Stabilizer

Completing the horizontal stabilizer went smoothly and turned out beautifully – ultimately. The fine folks at TAF, now Sling Aircraft, were super-supportive. Without going into great detail, I’d found that the leading edge bends of both HS skins were not on centerline – root to tip. They just wouldn’t fit properly – imposing significant stress and twisting of the structure. Sling Aircraft stepped up to quickly provide replacement HS skins and that saved the day.

I’ve been impressed with how precisely the holes in the skins match with the assembled structure. I’ve made a very conscious effort to take advantage of the kit precision. I try to get the skins initially positioned with very few clecos. I want to be able to move the skin slightly, until I can see that nearly all of the holes in the skin and structure are concentrically aligned. Starting the fitment process with fewer clecos makes that easier – possible. In practice, I’ve found that good overall initial skin position, relative to the underlying structure, allows the great majority of rivets to drop in – effortlessly. Once I’ve got the skin in place, I can further anchor things down with alternate clecos and hand-inserted rivets for the entire HS assembly.

I used a vertical HS working orientation that allowed me to evaluate skin fitment on top and bottom surfaces at the same time. Once the skin was in place, very few rivet holes needed attention – and then, only the slightest dressing with a chucking reamer in my lithium battery-powered drill. With a relaxed final fit of skin, rivets and structure – I’ve seen that when the rivets are pulled, nothing really moves. The permanently fastened skins are remarkably free of surface deviations. I’m quite pleased and anticipating that the contours of the final painted surfaces will be excellent.

HS Structure Assembly

The horizontal stabilizer assembly started by fitting together 2 sections of rear spar channel with the center section sandwiched by doubler plates – front and back. The result is over 8ft long. Appropriately sized cleco fasteners temporarily hold the parts together. A laser level helps to confirm that the channel is true – straight and free of twist.

The rear channel components were permanently fastened with a combination of 4.0 x 10mm and 3.2 x 8mm pulled rivets. Assembly continued with ribs joining with the front spar channel and clecos hold the front components as they are fitted and fastened in a similar fashion as the rear.

I’ve found that when 2 or 3 parts are sandwiched together with many rivets, it can be a little tricky to get a relaxed fit. Many overlapping holes must align precisely, in order for the rivet shanks to fit through all of the layers easily. I try to take whatever time is necessary to get the best concentric alignment of as many holes as possible, so that little or no reaming is necessary. The kit parts are punched very precisely and overlapping holes will likely line up, given the chance.

My assembly process starts with just a few clecos, while test fitting rivet shanks in many or most of the holes. Then I loosen and reset those few clecos until there is good natural alignment of as many holes as can reasonably be achieved. Eventually, a majority of the holes will line up perfectly, leaving only a very few that may need a little reaming to easily accept a rivet. Straight-shank chucking reamers seem to do a great job. Use the exactly right sizes. #30 and #20 are common.

The HS structure, without skins, is somewhat delicate. I’ve used a couple of stiffeners, from a Vans Aircraft workshop (skills practice) kit, clamped to the innermost HS ribs to provide support while the entire structure is riveted.

The HS structure is symmetrical. At some point, a decision must be made as to which side will be the top and the other side, therefore, the bottom. For my HS, continuity of how the rib flanges relate to the spar channels has turned out to be somewhat better on one side than the other. The side with the best potential for smooth skin support was chosen to be the top. I used a black permanent marker to make indications inside the front spar channel, where they can be seen during the various assembly phases.

With the HS top chosen, left and right HS panels become apparent. 2 Heyco 0.375in snap-bushings have been placed in the rear forming holes of the 2 innermost left-side ribs and anchored with some dabs of gray RTV. The nylon snap bushings are intended to protect the pitch trim servo wire (cable) as it passes through the ribs. I’ve elected to use nylon snap bushings instead of the rubber grommets supplied with the kit.