Tag Archives: tools

Airplane Noises

As far as I can tell, once an experimental aircraft build project gets to a certain point, there’s a right-of-passage that must be embraced — sitting in the thing. Today is the day.

I made a work platform from wood. It fits inside the fuselage on either side. I can sit on it, if and as needed.

EAA Wing Stand – Construction

It was time to get an EAA wing stand built. The container with my quick-build kit is on a ship, heading my way. It’s going to be sailing in to Tacoma, WA on or about February 5. A few days after that, I’ll have a shop full of Sling 2 airplane sections – wings, fuel tanks and fuselage. I’ve got to have a place to store both wing panels.

My good friend Charlie used a rainy day to help me. He’s been working hard, building his new home. I enjoy that he lets me help him sometimes. It was nice to have his craftsman expertise and company for my project.

The new portable propane heater can be seen in a couple of the photos.

Rudder – Prep and Prime

Preparing the rudder parts during the last few days of December and on into the first week of January 2020, involved increasingly familiar processes.

Inside the shop, deburring of all edges and holes was done with my Avery Speed Deburr tool and Scotch-Brite C/P 7A wheel. Light scuffing with a fine (red) Scotch-Brite pad seems to help make subsequent chemical treatments more effective. Initial parts degreasing was done by wiping with a splash of acetone on a paper towel.

Outside the shop, degreasing continued with Extreme Simple Green Aircraft Cleaner, using a soft clean rag, followed by a water rinse from the garden hose. It’s winter on the Olympic Peninsula and my well water is very – VERY – cold. My hands, wearing only thin nitrile gloves, are almost frozen. A few minutes in the shop to dry the parts and then it’s back outside to apply Alumiprep 33 with a silicone basting brush and freezing hands, while hovering over a black plastic mortar tub. Rinse, dry and repeat – this time with Alodine 1201.

It’s cold and it takes until the afternoon to get the shop inside air temperature above 50 degrees F. It’s something of a hassle to run my paint booth vent fan, as there are some gaps that let cold air in. Without the venting, I quickly and lightly spray just a few parts per day – often only one side. Then I have to abandon the shop until the next morning. It took several days to prime all of the rudder parts.

For me, degreasing and chemical treatments take hours and hours – most of it outdoors. I’m trying to use absolutely minimal amounts of material, not make a mess, and get satisfactory results. I just can’t afford to make or deal with dipping tanks. I tried to save time by not etching with Alumiprep. Unfortunately, I’ve found that even with thorough degreasing, there were places where the Alodine instantly sheeted off un-etched aluminum surface. Those parts got re-scuffed, etched and then re-treated with Alodine. I’ve tried not scuffing and short-cutting other steps – only to find that results tend to reflect the level effort that I put in.

The parts quality of the TAF Sling 2 kit is frankly remarkable – excellent in IMO. I could probably get away with little to no deburring – certainly much less than I’ve been doing. Priming is truly in the realm of optional effort. I’m taking it slow and having fun doing it all.

Somewhere on the TAF website there is a recommendation to start your building journey by ordering only the empennage kit and putting it together over a weekend – just to see what you’re in for. Maybe someone could take the parts out of the box – rivet them together over a couple of days – and end up with serviceable tail feathers. I suppose it’s mechanically possible, but highly unlikely, even for an experienced kit builder – if they haven’t previously built the empennage for some model of a Sling aircraft.

I believe a significant limiting factor of how fast you can go – is missing information detail. There are certainly a few pitfalls that only careful consideration will allow you to avoid. It takes time to understand. Achieving correct part orientation, relaxed fit and knowing exactly where and where not to rivet – is very important. If you get ahead of yourself, it’s going to take considerably more time, effort and cost for rework. Be careful. Strive to get things right on the first go.

Process for Rivnut Mounting Hole Enlargement

Before I can accomplish Step 1 in my build, I’ll need to enlarge some holes to accommodate larger M4 fasteners. At some point, TAF changed from M3 to M4 size rivnuts for the vertical stabilizer and other empennage sub-assemblies.

The m4 rivnuts have been supplied with the empennage sub-kit, but the formed parts haven’t been revised to accept them. The build instructions have yet to be updated. Correspondence with TAF confirmed that I will need to do hole enlargement. As the builder, it’s up to me to determine how. This involves tracking down proper tools and developing confidence in a process.

The TAF KAI calls for rivnut mounting holes to be as tight as is practicable and I’ve concluded that a size #A straight flute chucking reamer is the right size to achieve that. This results in the final diameter just under a nominal 6,0mm mounting hole size commonly specified for M4 rivnuts.

I found reaming from #12 to #A size was best done in 2 steps. First, #3 and then #A. This allows the beveled tip of the reamer to align and track nicely with the existing hole as I hold the part by hand and feed the reamer using my drill press at about 750 rpm.

There are also holes for the corresponding screws that will have to be enlarged, once I’ve identified each of them and established what fit clearance is best.

I’ve acquired reamers, developed the process and adequately demonstrated the skills to myself. I haven’t actually started on the build yet, but it feels good to see some aluminum chips in the shop. I’m very close to Build Day 1.