Category Archives: Wings

LH Fuel Tank – Final Fit (or Not)

The LH wing panel assembly has been back up on the workbench for several days. I can’t see any reason not to tackle permanent mounting of the fuel tank.

Well – I found a few reasons to not mount the tank today. I’m struggling to fully fit the tank and to align the rivet holes. I don’t have convenient access to the bottom surface of the wing panel. Gravity doesn’t seem to be helping either.

There’s a curious mix of places where rivets fit easily and squarely and other places where they won’t fit squarely, or at all. I’ll have to shift to Plan B. I think that means building some sort of stand(s) to hold the wing panel in a vertical leading-edge-up orientation.

LH Landing Light – Lens Retainer Strips

Several months ago, I’d taken a look at the landing/taxi light lenses and what it might take to mount them nicely. The LH wing panel was sitting horizontally on a workbench at the time.

About the first thing I noticed was that the mounting holes around the perimeter of the lens did not all correspond to the holes in the wing where the lights and the lens go. The holes lined up (pretty well) with the lens on the outside of the skin, but not when I put the lens in the opening, behind the skin – where it really belongs.

The other thing wasn’t really so much something I noticed, but rather, I realized that I needed to find a better solution for mounting the lens than the factory provided for – sheet metal screws through the skin and into the plexiglass lens. That’s just not going to cut it.

Now I had another classic opportunity for inspirational procrastination. I put the time to good use. It took weeks, but once again – procrastination paid off! The idea of retainer strips with anchor nuts came early. I also found that I’d likely use #4-40 hardware, because metric MK-1000 nut plates are absurdly expensive and challenging to source in the US. I hate mixing hardware standards on this bird, but that’s just how it goes. The blind anchor nuts on retainer strips behind the lens stuck in my head as an obvious solution.

What was not obvious to me at the time, was how to hold the retainers in place so that the lens could be fitted and fastened with the little screws. I made a prototype with a hand-cut strip of 0.020 aluminum and held the anchor nuts with AN426AD-3-3 solid flush rivets. The strip was flimsy and I attempted to hold it against the backside of the lens with – if you can believe it – sewing thread. Once I got the screws started, I’d pull the thread out. I was too unwieldy.

Weeks went by. Then it hit me – the same basic idea, but with 0.5 x 0.025 stainless steel strips, held to the plexiglass lens with little #4 CSK screws and ny-lock locknuts. I had to make new holes in the bottom half of the lens to match the wing, made six retainer strips and mounted them to the lens. Now I have a lens that is easily installable and removable. I’ve come to believe that this is what the factory does for the Sling TSi and I might have seen it if I’d looked at the TSi construction manual. Oh well. I got there. I’ll repeat the fitting and fabrication process for the RH lens assembly.

LH Aileron – Finishing Up

The LH aileron had been languishing under the bed in my guest bedroom with the skin cleco’ed in place. It just needed the outboard rib with the reworked hinge brackets.

Riveting the skin on the bottom went well. Now it’s back under the bed again, with and in the same state as its buddies. Final riveting of ailerons and flaps will wait until I’m in the mood to fit them on the wing assemblies. That might even wait until I have the wings joined to the fuselage. We’ll see. I think that decision depends on what I decide to do about painting. Fly first or paint first? Yes – another excellent opportunity for inspirational procrastination.

Ailerons – Fab, Rework and Pre-Assembly

Aileron assembly has been delayed by ignorance and procrastination. It’s amazing how long it took me to decide to lever $20 out of my pocket for a tool. There’s an anchor nut that gets attached to a rib with a couple of stainless steel rivets that have a 120 degree countersink. I was reluctant to spring for a 120 degree, #40 pilot cutter. This left me pondering various alternative ways I might proceed to attach the anchor nuts. The door was left open because the construction manual doesn’t say anything about it. But, I did have reference examples – other builder’s and identical anchor nuts mounted in my quick-build fuselage. I finally ended up getting the stupid pilot cutter and then mounted the anchor nuts as I knew they should be from the very beginning.

Another self-inflicted setback has been in play. Sometime earlier, I’d riveted one of the aileron hinge bracket and rib sub-assemblies together. Unfortunately, something I’d noticed, but dismissed during initial fitting, had to be corrected. The bolt holes on the inner and outer aileron hinge brackets were not in alignment. To compound the problem, I reasoned that it would probably be ok to ream the bolt holes a little – make them oblong – and somehow that work out ok. Wrong! The result was better alignment, but at the cost of precision (proper) fit.

Sloppy fit for the outer aileron hinge just isn’t going to cut it. What could I do? Eventually, I did what I I should have done in the first place – ask the factory for guidance. I sent an email and got an overnight response directly from Mike Blyth – designer of all Sling Aircraft models. The outer bracket just needs to be bent a bit more. So simple! That absolutely did not occur to me. Sadly, I’d ruined (by reaming) the inner and outer brackets for one aileron and needed new ones. TAF USA rushed me replacements. Fantastic service!

With new brackets in hand, I slightly increased the bends on the outer brackets for both ailerons, removed the old brackets from one of the ribs and riveted all of the sub-assemblies together. Beautiful! I can sleep again. No more worries thinking about how I would try to rationalize wobbly ailerons to myself, the DAR, my technical counselors and everyone else.

RH Flap – Ribs and Skin Assembly

With a now ample supply of 4,8mm rivets in both 15 and 10 mm lengths, finishing the lefthand flap could proceed. I did, however, have to make a decision about how to address hole misalignment involving the short ribs of the hing-rib subassemblies. The solution I chose was hole enlargement and larger 4mm rivets.

I’ve learned that perfect factory bends are required in order to get relaxed fit and freedom from structure twists and wags on the trailing edges of control surface skins. Knowing what to look for during inspection is essential. It had been months since I’d received the quick-build wing kit components and done my inspections. I was reasonably confident the skins were good, yet there was a huge sense of relief to see them actually fitting very nicely.

For the flaps and ailerons, it is common practice to initially rivet only the bottom surface of the skins to the ribs and brackets. The top surface and the row of rivets at the leading edge of the control surface remain free until they are fitted to and the trailing edges are perfectly aligned with the each other and the wing.

LH Flap – Prep and Assembly

As I near the end of dealing with fitting skins to structure, my confidence was pretty high that this would go well for the flaps (and eventually the ailerons). I’ve learned important lessons about how to inspect skins for proper fabrication – especially bends.

As I discovered from the building the empennage, lengthwise bends (folds) of the skins must be very close to perfect or else entire structure will be pulled out of true alignment when preparing or attempting to close up the final assembly.

There has proven to be considerable lead time in the process of securing replacement parts and the earlier a problem is discovered, the better. Almost immediately after the main QB kit was delivered in February, I looked over the flap and aileron skins – very carefully – and determined that they’d likely be acceptable.

Outdoors metal preparation with Alumiprep 33, Alodine 1201 and then rattle-can primer is much more convenient and pleasant with the warm summer weather. I opted to use NAPA 7220 gray self-etching primer, as none of the surfaces would be exposed. I had the stuff on-hand, but find that I don’t like it as well as the Rust-Oleum product, if for no other reason than the performance of the spray can. The any-angle can from Rust-Oleum is superior, even though I paid considerably more for the 7220 primer. (As I’ve mentioned before, if I do another build, I may well forgo alodine and primer altogether. With my budget and facilities it has been a huge time sink and perhaps not worth the effort. Even at my tender young age, I’ll be pushing up daisies before corrosion would be an issue with an untreated airframe.)

Due to a shortcoming with the listed shipping quantity in the wing kit packing list (KPL), I received only enough 4.8 x 15mm rivets to assemble one flap. I also found that one-size-fits-all — didn’t. It turns out that the overall thickness of one parts stack-up was very slightly less than the recommended grip length of the 15mm rivets. Even though there was no mention of this issue in the assembly instructions, it became obvious that a 10mm length would be better.

I ordered more rivets – both 15mm and 10mm lengths – twice. Once from TAF USA and then from a supplier of Gesipa rivets in UK. TAF sent a big batch of 10 and 15mm rivets to me overnight. Bravo! Great support effort! Thank you!! But, the rivets were not to my liking. They are some alternate brand, different design, slightly larger diameter (didn’t fit) and not nearly as well finished as the Gesipa product. I ordered the real deal, but it took 2 weeks to get them in-hand.

Fuel Tanks – Pressure Testing

Hooray – the fuel tanks seem to be sealed! That’s fantastic because if they weren’t, just about any rework scenario would be ugly. Thankfully, I don’t have to go there.

Having an active build community that shares experiences is so incredibly valuable. I think it’s absolute essential for the growth and long-term success of any kit manufacturer. Fortunately for home-builders of Sling Aircraft, there’s a steadily increasing number of builders and contributions to the knowledge base. That’s where I found the details of employing a water-manometer for safely and confidently testing the integrity of the fuel tanks. Thank you fellow Sling 2 builder — Pascal Latten: Sling2 Fuel Tank Leak Test

My test apparatus was not anywhere near as well-done as Pascal’s, but it worked – once I got the apparatus itself to not leak. At first, I was testing the apparatus. It failed miserably. Once I eliminated all of the leaks caused by clamped hose connections, I was eventually able to get to the point of testing the tanks themselves.

Over a test period of several days, I logged tank pressure vs. temperature and local barometric pressure readings. In theory, you can then compute a leak-rate value that can be compared to an established value (found in a reference table) that is acceptable for whatever you’re wanting to keep in your tank. In this case it’s gasoline.

I ran into a bit of a snag with my barometric pressure readings. After being astounded how little the barometric pressure readings were changing over the test period, I discovered that my home weather center was more for decoration than practical use. The old – thump on the glass trick – revealed that the mechanical pressure gauge was sticky. That pretty much trashed my data. But, all was not lost.

I’d casually kept eye on local barometric pressure, through local weather reports, and it really wasn’t changing a whole lot. It stayed within a rather narrow range. Temperature went up and down – and so did the tank pressure readings – quite a lot! It was somewhat frightening. Do I have I leak, I wondered? But throughout the tests, and ultimately, the ending tank pressure matched starting pressure at the same temperature. I felt good about that – perhaps even better than I might have felt about the subjectively assessing the relative size of an inflated balloon or nitrile glove. In the end, I didn’t bother to compute a leak value for either tank, but I have confidence that it’s all good to go!

Left Wing – First Look

With help from my buddy Charlie, I was able to get the left wing out of the stand and onto the workbench. It’s the first time I’ve had a chance to take a good look at the factory quick-build wing panel since it was unloaded from the shipping container back in February.

Wing jigs are not normally supplied with the QB wings, as their attachment points are (partially) occupied by late-stage structural attachments – especially for the outboard (wingtip) area. Nevertheless, I requested (and received) a set of jigs from TAF USA and was able to make effective use of them.

All-in-all, the wing looks pretty good. That’s a big relief. Wires for taxi and landing lights, pitot tube electrical and eventual 3-in-1 wingtip lights are there. Vinyl tubing for pitot airspeed and AOA sensor are in place as well.

Next, I’ll set up for pressure testing the fuel tanks with a homemade water manometer. The integrity of the factory-assembled fuel tanks must be assured before more time passes. What happens if there’s an issue? That’s a complete unknown. I will keep my fingers crossed and hope for the best. Positive thoughts!