Wingtips – More Rework

After a gallant effort on the original RH wingtip, I ordered and received a replacement RH wingtip. The new part still had too much length and thickness at the trailing edge, but the workmanship of the layup was much improved and it had noticeably better overall shape. It has still taken lots of work to get the new RH tip to fit. But, it’s coming along and it’s going to work out well.

The LH tip is proving to be huge headache. Despite extensive rework, it’s now clear that the LH wingtip isn’t close enough to the proper cross section to fit and it would take extraordinary effort to get it in the ballpark.

Just like the RH wingtip, the length of the LH part at trailing edge is too long and the trailing edge profile (taper) is too thick to fit the trailing edge wing skin. But the kicker is the overall height. It’s just too narrow – top to bottom. It’s almost 2 cm short, at the widest point.

Trying to stretch the height of the LH tip requires too much force. The LH wingtip has no imbedded reinforcement strip on the bottom edge. The top reinforcement is out of position. Without proper stiffness, the tendency for waviness between the rivet holes would be profound.

To continue with the original LH wingtip, I’d have to section the part and almost re-manufacture it. I’ve decided that it’s much too much time and effort, although I have seen one other builder go to such lengths and spent over 130 hours on just trying to get his wingtips to fit. I’m at more than 40 hours on wingtips and I’m going to cut my losses and get a better baseline part.

I went ahead and negotiated a new LH wingtip from the factory, as I did for the RH side. They’ve kindly agreed to send me one. Kudos to Sling Aircraft for standing by their product. Stay tuned.

VS – Trial Fit

One things leads to another. A question about the factory-installed rudder cables got me started down the road of test-fitting the vertical stabilizer. I was very pleased to find that it was easy to do and the fit appears to be excellent.

I hadn’t really expected to do this step just now. But, in order to evaluate much about the rudder cables, the entire control mechanism for the rudder and steerable nose-wheel needs to in place and adjusted. I learned this during a customer support exchange with Sling Aircraft’s Jean d’Assonville. I’d called him because I was concerned that the rudder cables may have been installed improperly during factory the quick-build of my fuselage. Jean assured me that it was very unlikely that the cables were wrong.

I was wondering because the KAI talks about one cable being slightly longer than the other. Somehow they seemed to be the other way around. Jean said that the only way to properly evaluate the setup would be to assemble everything. It only takes 15 minutes, he tells me! LOL. But, he really meant it!

It’s going to take me hours and hours, over days and days, to get the entire rudder control mechanism in place. That’s not only because I’m slow and plodding, but also because I’m not ready to install the nose-wheel yet. It’ll all just have to wait until I get the avionics rack, LRU’s and harness in place while the wheels are off and the fuselage is low and as easily accessible as it can be.

So then. I still don’t know for certain that the rudder cables are installed properly. But, I did get inspired to get the VS out from storage in the house and get it fitted on the fuselage. Technically, that’s progress! The nice fit between the fuselage and vertical stabilizer is satisfying too.

Wingtips – Rework in Progress

The fiberglass composite wingtips are needing a lot of rework. I don’t really believe it was intended be this way. What’s a simple amateur home-builder supposed to think?

The biggest area needing attention seems to be where the inside trailing edge of the wingtip is supposed to fit into the narrow skin at the tip of the wing. Several issues are being dealt with. Overall length is too long – by about 2cm (almost 1/2 inch). And, the fiberglass structure doesn’t match the contour of the wing profile near the TE. The taper of the fiberglass needs to become quite narrow. Plus – it’s all got to look pleasing and with and both wingtips ending up to be nicely matched – both aesthetically and aerodynamically.

I’ve decided that some sort of struts are needed to help the wingtips fit the contour of the wing. The kit instructions indicate that the wingtips are just match drilled and riveted. But, just letting the rivets pull the fiberglass shape seems like it’s going to lead to unwanted waviness from dips between the rivets. I fabricated simple struts to take some of the tension load off of the rivets. We’ll see how that goes.

I’m making progress, little by little – but it’s slow. Rework involves epoxy and with winter temperatures, each cycle needs a full 24 hours or more to cure. There’s plenty of sanding and shaping to do. Check fit. Then repeat.

I expect building an airplane to take some work, so I’m not going to complain too loudly. I fill terrifically privileged to be doing this project.

Wingtip Lights

Making a commitment to a specific model of wingtip light turned out to be quite the adventure. I did it. I think I’ll be happy with the choice. Time will tell.

Early on, I considered FAR § 91.209 Aircraft Lights and advisory circular AC 20-30B. That led to:

a. Advisory Circular AC 20-74, Aircraft Position Lights and Anti-collision Light Measurements.
b. Advisory Circular AC 43.13-2A, Acceptable Methods, Techniques, and Practices, Aircraft Alterations.
c. Technical Standard Order ('.ISO) C30b, Aircraft Position Lights.

I began to wonder how much time and effort I would have to put in to end up with demonstrably legal and adequate day and night, VFR and IFR lighting on my Sling 2 experimental. Man! This could get involved!

Just like my Warrior, I expect to have a red beacon on top of my VS and 3-in-1 lights on the wingtips. What and how much do I have to do – and prove – to achieve the same thing on my Sling 2? I asked questions on several builder groups and forums. Would 3-in-1 lights on the Sling 2 wingtips be ok? Will they be visible? Will I need a white tail light? Are non-TSO’d lights even legal at night? On and on.

I eventually decided that I was overthinking the whole business. I’d chosen the red LED tail strobe months ago. That’s a done deal. There’s a place on the wingtips for teardrop-shaped lights – and dammit! – they’re going to be cool-looking 3-in-1 LEDs. There!

It simply came down to which light? I’ve got Aveo for the tail. For sync compatibility, I’ve found I have to stick with Aveo on the wings too. They have a TSO’d product. They also have an experimental version of that same light. Even that experimental one is pricey. Aircraft Spruce had a sale on Aveo PowerBurst NG DayLite, w/white base – 300 bucks-a-pair. That’s more palatable than $780/pair for the nearly-almost-TSO’d experimental ones.

So there you have it – the tipping point! Price! Decision made. Hopefully the DAR will be happy when the time comes. I like ’em.

Another thing that gave me pause was how to mount the lights to the wingtips. The KAI no longer matches the composite parts that came with the kit and it hasn’t been updated in a long while. There is a callout for a plate with rivnuts to be mounted by some [unstated] means to the inside of the wingtip, under the site where the light will sit. That area is quite rough and I didn’t see how I was going to make a plate to fit and to get it attached and aligned.

Fortunately, I got some inspiration from a post on the FB Sling Builders group. Epiphany! Rivnuts and epoxy-glue is the way to go. Brilliant! The lights have mounting holes perfectly suited for #6-32 screws. M4 is too big and M3 is too small. Here we go mixing standards again – but what can you do?

I used the rubber base-gaskets provided with the light as a template to mark where holes go in the wingtips. I did some careful drilling and enlarged the hole for the wire bundle with a step-drill.

I needed the screws to be square to the mounting surface. I put each #6-32 x 1.25″ screw into its hole and threaded on a rivnut. I observed some amount of gap under the edges of the rivnut and used a wood-carving bit in the Dremel Tool to machine a small, flat surface for each rivnut to seat against, inside the wingtip. I cleaned up the areas with solvent on a paper towel. I positioned the rivnuts, wide flange to the mounting surface, and secured them gently with their screws. Then I carefully applied [original] JB Weld epoxy to the fiberglass and built up a mound around the rivnut, just below where the screw emerges.

Once the epoxy was cured I had perfectly aligned and ruggedly attached blind anchors for the the lights. This worked so nicely and was so easy to do I can hardly stand it! The rivnuts are not “set” as they normally would be. They’re just glued in place. For this application, the light mounting screws will never be tightened to the point where the rivnuts might compress.

Rudder Pedals – Final Fit

Trial fitting revealed that clearance between the arms on the pedal tubes and the hands of the travel-stops, bolted to each opposite arm, was nil. I could actually hear a squeak sound where there was contact, as I worked the pedals back and forth with my hands.

I pondered what to do about it, using my tried and true procrastination skills. As I have no proper equipment for clamping and bending anything heavier than light sheet metal – removing a bit of material from the the lower hand of each travel-stop came to my mind as the answer.

The pedal tubes were removed from the center-fuselage and the travel-stops unbolted from their respective arms. The Scotch-Brite wheel on my bench grinder did a fine job and I was easily able to remove about 1.5mm of material from the lower hands of the travel-stops to open up a satisfactory clearance.

The parts were reassembled and the pedal tubes reinstalled on the floor of the center fuselage. This time around, I installed the upper retainer brackets differently than I had for the trial fit. By now, I’ve noticed what several other builders and the factory are doing. For each bearing, there are a pair of top retainers. Rather than both retainers being together on the same side of the lower bracket, I’ve put one on either side, with space between. That seems to be the way it’s supposed to be. I like it.

Custom Cowl Mounting Strips – Trial Fit

The upgraded cowling strips fit remarkably well. Clecos are in many of the holes at this point and that’s without having to drill anything out. Ultimately, holes will need to be lightly ‘dressed’ with a #30 reamer. This will allow the rivets be positioned and set easily in the 3 and 4 layer stack-up of parts without a fight. The good news is, it’s all a pretty decent situation to begin with.

Earlier I did a little priming of the underside and edges of fastening tabs for the galvanized steel firewall. It’s winter cold outside, and I can’t really do spray painting just now. It was a small hidden area so I brushed on the gray 2-part epoxy primer. It took several days to cure fully. I’ll probably paint the entire firewall, mostly for aesthetics, when the weather warms a bit.

Care will be needed to address some gaps between layers of the parts stack-up. I believe that by removing most (or all) of the clecos across the top edge of the firewall and then riveting around the corner, fitting and pulling one rivet at a time while the pieces are free to move and pull together will allow the gap to close where the rivet is pulled.

I’m planning to install the ballistic parachute and that means I’ll be needing to accomplish some dimpling for most of the holes across the top of CF-RIB-003 and actual countersinking with a 120 deg pilot-cutter, along the top edge reinforcing pieces of the firewall, to accept 3,2 x 8 mm countersunk rivets. More on that in a future installment.

We’ll see how it all goes. Warmer days are ahead.

QB Fuselage Rework – Part 2

Sometimes you have to go backward to go forward. Drilling out rivets is one of those things you have to do sometimes when building and airplane. Fortunately, I’ve had to do very little reverse-assembly. But, there are a couple of parts I needed to add and I’ve opted for an upgrade to the cowling fasteners that calls for replacement of narrow, factory-mounted parts, with wider aftermarket replacements. Drill baby drill!

There’s a reinforcement plate, near where the ballistic parachute rocket canister mounts. The plate rivets to the RIB that forms the back wall of the parachute compartment. Several rivets had to be drilled out and removed so that the plate could be positioned and riveted. Done.

There was also a missing attachment angle for the top right edge of the parachute compartment. It should have been installed at the factory. It’s going on now, but a few rivets had to be removed before the angle was riveted using those same holes.

To go along with the other rework, I’ve opted for an upgrade to the factory-supplied cowl fasteners. I want to use Camloc fasteners rather than the Dzus fasteners that come with the kit. The Camloc parts are more user-friendly when it comes to unfastening and re-fastening of the cowling. For best results, getting the fasteners a little farther away from the edges of the fiberglass cowl is a good thing to do. That involves replacing the factory cowl fastener strips with wider parts that I ordered from Midwest Sky Sports. They make these wider strips and use them for the planes they build and they seem like a good idea to me.

The rivets holding the factory-strips needed to be drilled out. I did it. Now I don’t have that to contemplate anymore. I did a quick fit of the new cowling fastener strips. They look like they fit pretty well. That’s a relief after removing the factory parts.

Rudder Pedals – Trial Fit

The sight of rudder pedals in their proper home makes the whole project seem like it’s on track to be a finished airplane. That’s important for me to realize, now and again, and helps to reinforce the idea that finishing the airplane is possibly doable.

My Sling-branded rudder pedals are an option that I knew about, liked, and deliberately ordered with the quick-build kit. When my QB kit was delivered, the pedal parts I ordered were not there. Most of the related parts I got were for toe-brakes. It took more than 6 months to get things sorted out with the factory and finally get all of the parts for the pedals I ordered — all good now.

The typical braking configuration for Sling airplanes is a simple, single hydraulic master cylinder, lever-operated mechanism that evenly applies the Matco disc brakes for both main wheels. Toe-brakes are a necessity for Sling tail-draggers, but are available as an option for us lowly nose-dragger pilots. Space is pretty tight for 4 independent toe-brake master cylinders with all of the plumbing. From what I’ve been able to determine, Sling pilots find they like the hand-brake, even if they’re used to toe-brakes. I’m going for simplicity. My Piper Warrior has toe-brakes. They’re fine, until they leak all over your pedals and carpet and demand maintenance. I’ve been there, done that and got the T-shirt – thank you very much. Simplicity is a virtue. I’m going through the simple-is-better phase of my life now. You can have toe-brakes in your Sling.

I had hoped that I’d be done with this pedal mounting business – the final assembly. But, it’s turned into a trial attempt. The pedal tubes, bushings and brackets fit nicely, but I did find some clearance issues with the pedal stops that I’ll need to address. That means the whole pedal assembly has to come out again, except for the permanently riveted floor brackets. As I moved the pedals I heard squealing. It’s a little hard to explain, but the edges of the lower hands of the stops can (and do) occasionally touch the edges of the control arms where the nose-wheel pushrods and rudder cables attach. I have to do something. Exactly what, I don’t quite know. Something will come to mind. That’s where procrastination comes in.

Fortunately, I’ve elected to retain the top bushing brackets with M4 x 12mm SS cap screws, washers and elastic stop-nuts. That makes for straightforward disassembly. (I may eventually be forced to use 4mm pulled rivets, if the retainers show any signs of movement, but for now the M4 screws seem reasonable. Space is very tight and riveting would be a challenge – explanation below.)

Typically, the rudder pedal floor brackets, tubes and stops are fitted and mounted much earlier during fuselage assembly, with just the CF floor sitting ever so conveniently on the workbench. For my factory-assembled QB project, this didn’t happen and I’m doing the fitting and assembly work inside the completed CF structure. It’s certainly more challenging to do this work while kneeling and reaching into the cockpit foot wells.

CF – Rivnut Mounting

Setting rivnuts in the center fuselage (CF) area had been on the TODO list for a long time, but it took until now for me to summon up the nerve to actually do the deed. It turned out to be rather easy. I was in the right frame of mind and it all went very well.

A few of the rivnuts are in locations where I couldn’t use my drill-mounted (Astro ADN14) setting tool – particularly one of the M4’s for the A/P bracket nearest the main spar, and two M5’s that will serve to anchor the rudder return springs to the rear spar carry-through member. Fortunately, I’d acquired a nice hand tool (Astro 1443B) and it worked brilliantly for those. Concern about these rivets were what kept me dragging my feet until I’d worked up my courage to attempt the work.

Each of the holes where a rivnut goes, were enlarged to the proper size. This takes several steps, but it’s the same process I’ve used elsewhere. In places where I can’t see the back side of the mounted rivut, I use a mirror to inspect the crimp. They all looked great.

Various panels and covers in the CF that need to be removable, now have their mountings in place.

Composite Wingtips – Take 1

It didn’t take long before I realized that I’m in for a battle. The fiberglass wingtips, as supplied with the kit, simply don’t come close to fitting the wing. They’re obviously hand-made parts and are nowhere near identical. Frankly, I expected better. But, they are what they are.

I don’t have much hope that if I push the factory for new parts, I’ll get anything [much] better. I’ll count myself fortunate if I can get satisfactory results with less than the 130 hours another Sling 2 builder has put into his wingtips. Jeez – that’s a lot of time!

Right off the bat – the overall length is far too long to fit into the end of the wing panel. The airfoil shape cross-section is decidedly too flat. The up-sweeping trailing edge scallops are oddly different shapes. The lack of alignment at the point where the tapered wing skin is supposed to accept the trailing edge of the wingtip is unfortunately grotesque. Cutting and reforming will be necessary. Ultimately, the wingtips will be permanently mounted with 3,2mm multi-grip blind rivets. I haven’t settled my mind as to how I will mount the wingtip lights.

I decided to make a simple wing-shaped jig from a 2 x 4 foot section plywood. This jig is much less elaborate than others I’ve seen, but it will hopefully result in a useful tool and a reasonably consistent reference I can use to evaluate and correct the various eccentricities of these fiberglass parts.

I’ve been fortunate to be able to see what other builders have encountered and done with their wingtips, and so, I’ll share my adventures too. For the Sling 2 builders, we all seem to be – more or less – in the same boat.